# Crystal Structure of Acetamidinium Chloride 


#### Abstract

By Jack R. Cannon, Allan H. White,* and Anthony C. Willis, School of Chemistry, University of Western Australia, Nedlands, Western Australia

The crystal structure of the title compound has been determined by the heavy atom method from $X$-ray diffractometer data and refined by full-matrix least-squares to $R 0.037$ for 855 observed reflections. Crystals are monoclinic, space group $C 2 / c, a=11.673(2), b=9.862(2), c=9.601(1) \AA, \beta=111.71(2), Z=4$. The structure comprises a planar $\mathrm{CCN}_{2}$ skeleton with equal $\mathrm{C}-\mathrm{N}$ bonds (mean $\mathrm{C}-\mathrm{N} 1.30_{7} \AA$ ) and a short $\mathrm{C}-\mathrm{C}$ single bond [1.477(3) $\AA$ ]. The chloride ion is surrounded by four amino-hydrogen atoms $2.33(2)-2.46(2) \AA$; two of the hydrogen contacts are to the same cation from independent $\mathrm{NH}_{2}$ groups in a ' chelate ' arrangement.


The amidines are typically strong bases which protonate to form amidinium salts. The cation has been represented as the resonance hybrid:


In order to establish accurate geometry for the unsubstituted amidinium grouping, we have determined the crystal structure of acetamidinium chloride. It was prepared as long deliquescent needles, m.p. $176-178{ }^{\circ} \mathrm{C}$ [cf. lit., $164-166$ (ref. 1), $177-178^{\circ}$ (ref. 2)] by the method of Dox; ${ }^{1}$ a coated needle section $0.35 \times 0.45 \times 0.52 \mathrm{~mm}$ was used for the crystallographic work.

## EXPERIMENTAL

Unit-cell calibration was carried out by a least squares fit of the angular parameters of 15 reflections ( $20 \mathrm{ca} .25^{\circ}$ ) centred in the counter aperture of a Syntex PI four-circle diffractometer. A unique data set was gathered by a conventional $2 \theta-\theta$ scan within the limit $2 \theta<50^{\circ}$, yielding 905 independent reflections of which 855 with $I>\sigma(I)$ were considered observed and used in the structure solution and refinement. No correction was applied for absorption.

Crystal Data. $-\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{ClN}_{2}, M=94.56$. Monoclinic, $a=$ $11.673(2), \quad b=9.862(2), \quad c=9.601(1) ~ \AA, \quad \beta=111.71(2)^{\circ}$, $U=1026.8(4) \quad \AA^{3}, \quad D_{\mathrm{m}}=1.20(2), \quad Z=8, \quad D_{\mathrm{c}}=1.226$ $\mathrm{g} \mathrm{cm}^{-3}, F(000)=400$. Mo- $K_{\alpha}$ radiation (monochromatic) $\lambda=0.71069 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=4.0 \mathrm{~cm}^{-1}$. Space group C2/c, ( $C_{2 h}{ }^{6}$, No. 15). Neutral-atom scattering factors, $\mathrm{Cl}^{-}$ excepted, ${ }^{3,4}$ that for $\mathrm{Cl}^{-}$being corrected for anomalous dispersion $\left(\Delta f^{\prime}, \Delta f^{\prime \prime}\right) .^{5}$

The structure was solved by the heavy-atom method and refined by full-matrix least squares, the thermal parameters of the hydrogen atoms being refined isotropically with the
$\dagger$ For details, see Notice to Authors No. 7, J.C.S. Perkin II, 1975, Index issue.

1 A. W. Dox, Org. Synth., Coll. Vol. I, 1941, 5.
${ }^{2}$ H. M. Barnes, D. Kundiger, and S. M. McElvain, J. Amer. Chem. Soc., 1940, 62, 1281.
remaining atoms anisotropic according to the form $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}+\right.\right.$ $\left.\left.2 U_{13} h l a^{*} c^{*}+2 U_{23} k l b^{*} c^{*}\right)\right]$. Refinement terminated with all parameter shifts $<0.05 \sigma$ at $R=0.037$ and $R^{\prime}\{=$ $\left.\left[\Sigma w\left(\left.\left|\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|^{2} / \Sigma w\right| F_{\mathrm{o}}\right|^{2}\right)^{\frac{1}{2}}\right]\right\} 0.048$, the weighting scheme of the form $w=\left[\sigma^{2}\left(F_{0}\right)+n \times 10^{-4}\left(F_{0}\right)^{2}\right]^{-1}$ being found appropriate for $n=4$.

Atomic numbering within the cation is shown in the Figure; results are presented in Tables 1 and 2. Structure


Unit cell contents projected down $b$, showing $20 \%$ thermal ellipsoids. Bonds of molecules in the upper half of the cell are shown solid; hydrogen bonds are shown as dotted lines, with breaks indicating intercellular contacts
amplitudes are deposited as Supplementary Publication No. SUP 21554 (4 pp, 1 microfiche). $\dagger$ Computation was carried out on a CDC 6200 machine using a local variant of the ' $X$-Ray '72' program system. ${ }^{6}$

## discussion

As expected, the structure is comprised of acetamidinium $\left[\mathrm{MeC}\left(\mathrm{NH}_{2}\right)_{2}\right]^{+}$and chloride ions. The $\mathrm{CCN}_{2}$
${ }^{3}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }_{4}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
${ }^{5}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
6 ' $X$-Ray' program system, Technical Report TR 192 , Computer Science Centre, University of Maryland, U.S.A., June 1972.
skeleton is a good plane (Table 3) and has approximate $m m$ symmetry with only trivial deviations. The structure of the cation clearly supports the mesomeric configuration, equal $\mathrm{C}-\mathrm{N}$ bond lengths being observed; the mean $\left(1.30_{7} \AA\right)$ is longer than that found in $\left[\mathrm{MeClC}: \mathrm{NH}_{2}\right]^{+} \mathrm{Cl}^{-}\left(\mathbf{1 . 2 6} \mathbf{5}_{5} \AA\right)$ and related compounds with

Table 1
Atomic fractional cell for $\mathrm{Cl} \times 10^{5}, \mathrm{C}$ and $\mathrm{N} \times 10^{4}$, and $\mathrm{H} \times 10^{3}$ and thermal parameters ( $\times 10^{3} \AA^{2}$ ) with least-squares estimated standard deviations in parentheses

| Atom | $x$ |  | $y$ | $z$ |  | $U$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cl | $07765(4)$ |  | 8761 (4) | 47839 |  | * |
| C(1) | 3 440(2) |  | 0 666(2) | 10255 |  | * |
| $\mathrm{H}(1)$ | 368(3) |  | -026(3) | 1035 |  | 110(9) |
| $\mathrm{H}(2)$ | 294 (3) |  | 084(3) | 1088 |  | 110(9) |
| $\mathrm{H}(3)$ | 413(2) |  | 118(3) | 1059 |  | 83(7) |
| $\mathrm{C}(2)$ | $2707(2)$ |  | 0 983(2) | 8670 |  |  |
| N(1) | 1 645(2) |  | 0391 (2) | 7992 |  | * |
| $\mathrm{H}(4)$ | 147(2) |  | -017(2) | 844 |  | 56(6) |
| $\mathrm{H}(5)$ | 121(2) |  | 063(2) | 704 |  | 82(7) |
| $\mathrm{N}(2)$ | $3139(2)$ |  | $1844(2)$ | 7948 |  | * |
| $\mathrm{H}(6)$ | 267(3) |  | 201(2) | 704 |  | 73(7) |
| $\mathrm{H}(7)$ | 385 (2) |  | 220(2) | 842 |  | 68(6) |
| *Anisotropic thermal parameters: |  |  |  |  |  |  |
|  | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{12}$ | $U_{13}$ | $U_{23}$ |
| Cl | 58.9(4) | 69.6(4) | 66.5(4) | 16.0(2) | 17.1(2) | 3.9(2) |
| C(1) | 71(1) | 66(1) | 65(1) | -4(1) | 23(1) | $5(1)$ |
| $\mathrm{C}(2)$ | $54(1)$ | 48(1) | $62(1)$ | 2(1) | 26(1) | -1(1) |
| $\mathrm{N}(1)$ | 58(1) | $77(1)$ | $72(1)$ | -13(1) | 21(1) | 12(1) |
| $\mathrm{N}(2)$ | $59(1)$ | 64(1) | $61(1)$ | -11(1) | 19(1) | $5(1)$ |

only one $\mathrm{C}: \mathrm{NH}_{2}{ }^{+}$linkage, as expected, ${ }^{7}$ but much shorter than the $\mathrm{C}-\mathrm{N}$ single-bond distance ( $1.47 \AA$ ). The $\mathrm{C}-\mathrm{C}$ bond is also considerably shorter than the normal single-bond value. While the amino-hydrogen atoms are also approximately coplanar, $\mathrm{H}(5)$ and $\mathrm{H}(6)$, which chelate the adjacent chloride ion, may be twisted slightly out of the plane towards that ion so that the $\mathrm{NH}_{2}$ groups are rotated slightly about the $\mathrm{C}-\mathrm{N}$ bonds. This constraint is also presumably instrumental in maintaining the angle $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(2)$ close to $120^{\circ}$; likewise the angle between the hydrogen atoms at each nitrogen is unexpectedly large. $\mathrm{H}(3)$ of the methyl group lies approximately in the plane of the cation on the side of $\mathrm{N}(2)$.

The chloride ion has only four close contacts, all to amino-hydrogens, and two of these are to the same
${ }^{7}$ J. M. Williams, S. W. Peterson, and G. M. Brown, Inorg. Chem., 1968, 7, 2577, and refs. therein.
cation, so that the resulting geometry is highly distorted. In spite of this, the $\mathrm{Cl} \cdots \mathrm{H}$ distances are surprisingly even and while very much longer than that

Table 2
Interatomic distances $(\AA)$ and angles $\left({ }^{\circ}\right)$ with least-squares estimated standard deviations in parentheses
(a) Cation geometry

| $\mathrm{C}(1)-\mathrm{H}(1)$ | 0.95 (3) | $\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{H}(3)$ | 108(3) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1)-\mathrm{H}(2)$ | 0.99(3) | $\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $110(2)$ |
| $\mathrm{C}(1)-\mathrm{H}(3)$ | 0.90 (3) | $\mathrm{H}(2)-\mathrm{C}(1)-\mathrm{H}(3)$ | 110(3) |
| $\mathrm{C}(1) \mathrm{C}(2)$ | 1.477 (3) | $\mathrm{H}(2)-\mathrm{C}(1)-\mathrm{C}(2)$ | 110(2) |
| $\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{H}(2)$ | 109(3) | $\mathrm{H}(3)-\mathrm{C}(1)-\mathrm{C}(2)$ | $110(2)$ |
| $\mathrm{C}(2)-\mathrm{N}(1)$ | $1.305(2)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$ | 120.0(2) |
| $\mathrm{C}(2)-\mathrm{N}(2)$ | 1.310 (3) | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$ | 119.5(2) |
| $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(2)$ | 120.5(2) | $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{H}(4)$ | 116(1) |
| $\mathrm{N}(1)-\mathrm{H}(4)$ | 0.77(2) | $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{H}(5)$ | 118(2) |
| $\mathrm{N}(1)-\mathrm{H}(5)$ | 0.90 (3) | $\mathrm{H}(4)-\mathrm{N}(1)-\mathrm{H}(5)$ | 126(2) |
| $\mathrm{N}(2)-\mathrm{H}(6)$ | 0.86(2) | $\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{H}(6)$ | 116(2) |
| $\mathrm{N}(2)-\mathrm{H}(7)$ | 0.86 (2) | $\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{H}(7)$ | 118(2) |
|  |  | $\mathrm{H}(6)-\mathrm{N}(2)-\mathrm{H}(7)$ | 126(2) |
| (b) Anion environm | ment |  |  |
| $\mathrm{Cl} \cdots \mathrm{H}(5)$ | 2.38(3) | $\mathrm{Cl} \cdots \mathrm{H}(5)-\mathrm{N}(1)$ | 156(2) |
| $\mathrm{Cl} \cdots \mathrm{H}(6)$ | 2.46 (2) | $\mathrm{Cl} \cdots \mathrm{H}(6)-\mathrm{N}(2)$ | 156(3) |
| $\mathrm{Cl} \cdots \mathrm{H}\left(4^{\text {I }}\right.$ ) | 2.43(2) | $\mathrm{Cl} \cdots \mathrm{H}\left(4^{\mathrm{I}}\right)-\mathrm{N}\left(1^{1}\right)$ | 176(2) |
| $\mathrm{Cl} \cdots \mathrm{H}\left({ }^{\text {(III }}\right.$ ) | 2.33(2) | $\mathrm{Cl} \cdots \mathrm{H}\left(7^{\mathrm{II}}\right)-\mathrm{N}\left(2^{\text {11 }}\right)$ | 178(2) |
| $\underset{\mathrm{H}}{(5)} \cdots \mathrm{Cl} \cdots \mathrm{H}(6)$ | 53.4(9) | $\mathrm{H}(6) \cdots \mathrm{Cl} \cdots \mathrm{H}\left(4^{1}\right)$ | 98.0 (8) |
| $\mathrm{H}(5) \cdots \mathrm{Cl} \cdots \mathrm{H}\left(4^{\text {I }}\right.$ ) | ) 97.2(9) | $\mathrm{H}(6) \cdots \mathrm{Cl} \cdots \mathrm{H}(7 \mathrm{II})$ | 147.1(8) |
| $\mathrm{H}(5) \cdots \mathrm{Cl} \cdots \mathrm{H}\left(7^{\text {II }}\right)$ | 1 123.5 (9) | $\mathrm{H}\left(4^{1}\right) \cdots \mathrm{Cl} \cdots \mathrm{H}\left(\mathrm{7}^{\text {II }}\right)$ | 114.4(7) |
| Transformations of | of the asymm | metric unit. |  |
| I $x, \bar{y}, z-\frac{1}{2}$ |  | I $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$ |  |

Table 3
Equation of least-squares plane defined by the $\mathrm{CCN}_{2}$ skeleton in the orthogonal ( $\AA$ ) frame defined by $X=$ $a x+c z \cos \beta, Y=b y, Z=c z \sin \beta$
$-0.6014 X+0.7466 Y+0.2844 Z=2.870$
$\sigma$ of defining atoms: $0.003 \AA$
$\chi^{2}\left(3^{\circ}\right.$ of freedom $) \quad 6.87$
Atom deviations $(\AA): \mathrm{C}(1)-0.002, \mathrm{C}(2) 0.005, \mathrm{~N}(1)-0.002$, $\mathrm{N}(2)-0.002, \mathrm{H}(1)-0.81, \mathrm{H}(2) 0.77, \mathrm{H}(3) 0.05, \mathrm{H}(4)-0.08$ $\mathrm{H}(5) 0.03, \mathrm{H}(6) 0.03, \mathrm{H}(7)-0.02$, Cl 0.202
of $\mathrm{H}-\mathrm{Cl}(1.274 \AA)$, they are nevertheless much less than the van der Waal's contact distance ( $\mathbf{3 . 0} \AA$ ) and clearly represent a strong interaction. The mean $\mathrm{Cl} \cdots \mathrm{H}$ distance $(2.40 \AA)$ is appreciably longer than that found in $\left[\mathrm{MeClC}: \mathrm{NH}_{2}\right]^{+} \mathrm{Cl}^{-}(2.02 \AA)$, the chloride ion in the latter having only two neighbouring amino-groups.
[5/867 Received, 8th May, 1975]

